AD No.——

L

ADAOSS5060

ODG FiLE COPY

RADAR IMAGE MODELING AND PROCESSING FOR REAL-TIME RF SIMULATION

o
g
L
|E

ARO GRANT No. DAAG2977G0044
‘Nov. 20, 1976 - Feb. 19, 1978

Anil K. Jain
Jaswant R. Jain

Department of Electrical Engineering
State University of New York at Buffalo
223 Bell Hall
Amherst, N.Y. 14260

ON STA

% Approved for public release;
Distribution Unlimited




x
|
!

i T P B

—

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

R RT NTATION PAGE
T REPORT NUMBERI T /=~ % 5 4~ Ao-£ ] B SOVT ACCESSION NO,
. ot

READ INSTRUCTIONS
BEFORE COMPLETING FORM

3. RECIPIENT'S CATALOG NUMBER

&>,

_TITLE (and Subtitle) i . W——

——— / /]
RADAR IMAGE MODELING AND PROCESSING FOR REAL- }

ﬂcJ 7

TYPE-OF W
l Final Aepert.
11 -2/19/ 7§

4

54

e e e |

6. PERFORMING ORG. REPORT NUMBER

(B

M amsamasne

TIME RF SIMULATION.
?L // A gy =

-

y }J

8. CONTRACT OR GRANT NUMBER(s)
ARO Grant No.

DAAG2977G0044 N4

Anil K./Jain \
PERFORMING ORGANIZATION NAME AND ADDRESS

Jaswant R Jain /
SUNYAB v

Dept. of Electrical Engineering, Bell Hall Rm223

10. PROGRAM E

EMENT, PROJECT, TASK
AREA & 'ORK UN

IT NUMBERS

11

CONTROLLING OFFICE NAME AND ADDRESS
U. 5. Army Research Office
Post Office Box 12211
Research Triangle Park, NC 27709

Amherst, NY 14260
(11

‘13 NU

REPORT DATE
Mar 7

B

J

14.

MONITORING AGENCY NAME & ADDRESS(if different from Controlling Office)

15. SECURITY CLASS. (of thia report)

Unclassified

15a. DECL ASSIFICATION/ DOWNGRADING

SCHEDULE
NA

. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

NA

SUPPLEMENTARY NOTES

The findings in this report are not to be const

Pepartment of the Army position, unless so desi
documents.,

rued as an official
gnated by other authorized

- KEY WORDS (Continue on reverse side if necessary and identify by block number)

Image Modeling; Area Correlation; Radar Image Processing

20.

ti

images.
(rotation) and those of high pass filtering of images have been studied.
image models based on finite difference approximation of partial differential
equations (PDEs) has also been studied. |

ABSTRACT (Continue on reverse side If necessary and identify by block number)

' The problem of modeling and processing radar images for tracking applica-

ons has been considered.

Digital simulation experiments have been carried out
for area correlation of a reference target image with on-board radar acquired

Effects of misregisterations of radar height (scaling) and orientation
Use of

oD

FORM
1 JAN 73

1473 a7y

EDITION OF | NOV 65 IS OBSOLETE
i

Unclassified

)‘ﬂfi .

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)




i o ARl 5 it s M i s Ao L s Do T 50 Mk s bbbt

SECURITY CLASSIFICATION OF THIS PAGE(When Data Bntered)

- e m L AR L Pate Padaea




P i

N e gt

e Y

II.

III.

IV.

TABLE OF CONTENTS

Page
List of Figures iii
List of Tables v
List of Appendixes v
Abstract vi
Summary 1
Forward Looking Radar Image Modeling and Simulation
2.1 Introduction 4
2.2 Area Correlation 5
2.2.1 Effect of Scaling 6
2.2.2 Effect of Rotation 6
2.2.3 Enhancement of FLR Images 7
2.2.4 Performance Evaluation 7
2.3 Modeling of FLR Images 8
2.4 Experimental Simulation Results 10
2.5 Conclusions and Future Work 13
Stochastic Image Modeling and Applications 38
Real-Time RF Simulation of Re-entry Vehicles 43
Bibliography and References 46
Appendix I 47
Appendix II 56

BRARAL b

NERON | §

P -1-—.-~.~---'r'

i1 W oo
mwﬂlﬂfhaﬂ 2 ty

Dist. AV, @i, "5:L-i-x:'.aq:

tl ] ]

Mt oot kb dCSataiie Lok




q LIST OF FIGURES
{; Page
1 1. FLR Geometry 2
i; 2. Square ERTS Image used as SLR image 11 -
3. SLR image of Figure 2 with axes scaled by a factor 0.98 11
4. Ring-shaped (Radial) SLR image obtained from image of Fig. 2 3
with intensity in the area outside the ring set equal to the
mean intensity of the image inside the ring 15
5. FLR~1 Image (see Table I for parameters) 16
6. FLR~-1 Image of Figure 5 rotated clockwise by 2t 16
7. Logarithm of the magnitude of the Fourier transform of the SLR
image of Figure 2 17
8. Logarithm of the magnitude of the Fourier transform of the FLR
image of Figure 5 17
9. a-Filtered image of the FLR image of Figure 5, ¢ = 0.8 18
10. a-Filtered image of the FLR image of Figure 5, o = 0.6 18
L1 Three Dimensional plot of the correlation function of square
SLR and ring-shaped SLR image (shown in Fig. 2 and Fig.4 ) 19
12. Horizontal and vertical cross-sectional plots of the corre-
lation function shown in Fig.l1l 20
13.. Three dimensional plot of the cross correlation function of
the SLR and FLR-2 images 21
14. Three dimensional plot of the cross correlation function of
the Filtered SLR (¢ = .5) and FLR=2 images 22
15. Three dimensional plot of the cross correlation function of
the scaled (2%) and filtered (o = .5) SLR image and rotated
(2°) FLR-1 image 23
16. Three dimensional plot of the cross-correlation of the
filtered (o = .5) SLR and filtered (o = .5) FLR-1 images 24
17. Horizontal and vertical cross-sections of the 3-D plotof
Fig.13 across the peak. 25
18. Horizontal and vertical cross-sections of the 3-D plot of
Fig. 14 across the peak 26

19. Horizontal and vertical cross-sections of the cross-cor-
relation function of rotated (2°) FLR~l and filtered (o =
.5) SLR images across the peak 27




Page
20. Horizontal and vertical cross-sections of the cross-correlation
function of FLR-1 and scaled (2%) and filtered (o = .5) SLR
images across the peak 28
21. Horizontal and vertical cross-sections of the cross-correlation
function of FLR-2 and scaled (2%) and filtered (o = .5) SLR
\ images across the peak 29
22. Horizontal and vertical cross-sections of the 3-D plot of Fig.
B 15across the peak 30
23. Horizontal and vertical cross-sections of the 3-D plot of Fig.
16 across the peak 31
24. Signal to noise ratio of the correlation peak vs. the blur fac-
tor 32
: 25. Effect of scaling on the signal to noise ratio of the correla-
: tion peak 33
26. Effect of rotation on the signal to noise ratio of the correla-
peak 34
27. Effect of Fourier domain o-filtering of the FLR~l image on the
signal to noise ratio of the correlation peak 35
28. Overview of real time hardware in the loop simulation of an area
3 correlation guidance system 44

29. Detail architecture of real time RV simulation at U.S. MIRADCOM 45

iv




S =5
e o 2 S o S

II

II

LIST OF TABLES

Forward Looking Radar Parameters

Area Correlation Results

LIST OF APPENDIXES

Application of Partial Differential Equations in Image Restoration

Abstractsof Publications

36

37

47

56




ABSTRACT

The problem of modeling and processing radar images for tracking ap-
plications has been considered. Digital simulation experiments have been
carried out for area correlation of a reference target image with on-board
radar acquired images. Effects of misregisterations of radar height (scaling)
and orientation (rotation) and those of high pass filtering of images have
been studied. Use of image models based on finite difference approximation

of partial differential equations (PDEs) has also been studied.

KEY WORDS: 1Image Modeling; Area Correlation; Radar Image Processing
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I. SUMMARY

During the duration of this project the following progress has been

The problems associated with the overall goal of Forward Looking Radar

Image Modeling and their real time simulation have been identified.

The basic problems are:

a) Modeling and Identification of the Point Spread Function (PSF)
of the FLR seeker.

b) Stochastic Modeling of Image Fields and their use in image re-
storation and system identification

c) Hardware encoding of FLR image'model for real time RF simulation

A mathematical formulation of a typical FLR image has been developed.

The FLR image can be synthesized digitally using this model and a
reference Side Looking Radar (SLR) image. The model can also be
identified if the statistical properties of SLR image are known.

The underlying identification scheme would require a statistical
model for two dimensional image fields. The FLR images are used
for re-entry vehicle guidance via area correlation techniques. For
a high signal to noise ratio of correlation peaks the FLR image
(which is generally quite blurred) should be restored (or enhanced).
Image restoration algorithms have been studied in this period using
some new image models and some new algorithms have been shown to be
associated with these models. (see attached list of publications).
Further work is required to consider restoration schemes which in-
clude space varying nature of the point spread function (PSF) of the

FLR imaging system.




T

r? 3, The problem of stochastic image modeling has been studied in the

framework of stochastic partial differential equations. Our re-~

sults show that these models are quite effective and are often .
better than conventional image covariance models. These models

have been applied for restoration of noisy images. Further work

is required for application of these models to restoration of

FLR images and for further refinement models.

4. Collaborative efforts were made with the Radio Frequency Simula-
tion System (RFSS) laboratory of the Advanced Simulation Center
(AsSC) of the U.S. Missile Research and Development Command
(MIRADCOM) for hardware in the loop simulation of the FLR image
data. These efforts have produced a design of methodology of RFSS
configuration to generate RF signals which represent FLR image
data. Harware design for transmission and reception of these

signals still needs to be accomplished.
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1. A.K. Jain

Project Director

25 J.R. Jain - Graduate Student
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Technical and Secretarial Support
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I1. FORWARD LOOKING RADAR IMAGE MODELING AND SIMULATION

2.1 Introduction

It is well known that for missile and aircraft guidance the area cor-
relation between a target reference image, already stored in the vehicle,
and a target image acquired by an on-board sensor could be utilized. The
cross-correlation function of the two images is first obtained and the peak
value of chis function, indicating a match between the two images is
located. The peak location is used to guide the vehicle in the direction
of the target. It is assumed that a significant area of the target image
is within the range of the on-board reference image; otherwise, no peak
(or a false peak) could be located. Typically, this technique is used in
the terminal phase of the flight.

For many terminal guidance applications the reference image is often
generated by a side looking radar (SLR) or a high resolution sensor, while
the on-board sensor is a forward looking radar (FLR) with significantly re-
duced resolution. Application of area correlation for guidance, therefore,
requires an understanding of interactions between the actual scene and the
radar sensing process. Also important for obtaining a good correlation
peak is the proper registeration of the two images. In practice two forms
of misregisterations, namely, scaling and rotation of one image with respect
to another are common. So it becomes important to know the effects of
these misregisterations on the detection and the location of the peak. Here
we report the results of the computer simulation experiments carried out to
study the effects of FLR parameters, scaling,rotation and the filtering of
FLR images on the area correlation.

In section 2.2 we describe the theoretical formulation of the experi-
ments and the necessary assumptions. Modeling of FLR images from a given

4




SLR image is briefly described in Section 2.3. Experimental results of
computer simulations are summarized in Section 2.4. Conclusions and sug-

gested future work are given in Section 2.5.

2.2 Area Correlation

Let u(x,y) and v(x,y) denote the reference and the on-board generated

images respectively. Then their area correlation function, denoted by r(x,y),

is given by

® o

r(x,y) = \ S u(x’,ydvix + x’, y+ y’)dx’dy”’. (1)
'*\ =C00'~ =00 J

In practice the images are available only over a finite area and hence the

integration in (1) is performed only on the available area. For digital

processing we approximate the integration in (1) by a summation given by

N N N N
r(myn) = ¥ ¥ u(k,f)v(kim-1, £+n-1), = -1 <m,n <7, (2)
k=12=1 & :

where the available reference SLR signal has been digitized to N x N samples.
Evaluation of r(m,n) using (2) requires the knowledge of one of the images
over a larger area than the other. If both images are available over the
same area, as is assumed in our experiments, then replacing the function
v(i,j) by its two dimensional periodic repetition, allows one to compute

(2) efficiently using discrete Fourier transform. If U(m,n) and V(m,n)
denote the discrete Fourier transform (DFT) of sequences u(k,£) and v(k,£)

respectively, then
R(m,n) = U*(m,n)V(m,n) , L <mns<sN (3)

gives the DFT of r(k,£), where * dentoes the complex conjugate. The dis-

crete correlation function r(k,£) could then simply be computed by taking




!

g

e e

the inverse DFT of R(m,n). The use of fast Fourier transform (FFT) algorithm
reduces the computation of (2) from N4 to O(NzlogzN). It should be noted
that r(k,£) computed as above is not centered around the origin. This

could easily be done by shifting the samples in each coordinate axes by

g and reindexing.

2.2.1 Effect of Scaling

The effect of misregisteration of radar heights, at which the reference
and the on-board images are generated, is equivalent to scaling the axes of
one of the images relative to the others. We assume the scaling of the
reference image. A digital scaled image, with a scale factor of s > 0,

could be approximated by

us(k,L) = u(lsk) , |sL)) (4)

where |a | denotes the highest integer less than or equal to a.

2.2.2 Effect of Rotation

Another common form of misregisteration is the rotation of the live

image with respect to the reference image along the vertical axis of FLR.

As FLR images are radially scanned the rotation could be easily accomplished

in polar coordinates. Let

v(r,0) = v(rcosb, rsinf)

then an FLR image rotated by an angle ¢ with respect to the reference image

in clockwise direction is given by
\)(P(r’e) = V(I'se‘tp)

and




v¢(x,y) = vw( x2+y2 , arctan(y/x)).

2.2.3 Enhancement of FLR Images

As noted earlier, the on-board generated FLR images have a poor reso-
lution compared with the reference images. It is intuitively clear then,
and also would be éeen in the next section, that the resulting correlation
function would not yield a desirable sharp peak and could even give a false
peak. To remedy this it is desirable to enhance by some sort of high pass
filtering of the FLR images before correlating them with reference images.
There are various image enhancement techniques that are available in the
literature. A class of techniques, known to be effective for blurred images
performs filtering in the Fourier domain. This could be profitably exploited
in our case as we are already taking the Fourier transform to get the cor-
relation function. If V(m,n) is the DFT of the discrete FLR image, then a

typical Fourier domain filter, is
Vg(m,n) = F(V(m,n))

where F denotes a filter function, which could be linear or non-linear. An
example of linear filter is the Wiener filter. A nonlinear high pass filter

is, for example, the so-called ao-filter given by

v (m,n) = [v(m,n)!¥ JMETE(Vm,R)) 0<asl (5)
and (3) becomes

Ra(m,n) = U*(m,n)va(m,n) "

2.2.4 Performance Evaluation

In practice v(x,y) and u(x,y) are mot zero mean images. If the mean is
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comparable to the variance of the image it adds a significant constant bias
to the correlatica function and the relative sharpness of the peak is de-
creased. So it is desirable to make one of the images zero mean, which

in our case could be easily accomplished by setting the first element of the
DFT of one of the images to zero. To study the effects of FLR parameters,

misregisterations,and o-filter on the area correlation we define a

criterion, called signal to noise ratio (or S/N), as

Value of the Positive Peak
Standard Deviation of the Correlation function

S/N =

2.3 Modeling of FLR Images

For analyzing area correlation techniques it is necessary to have a
model of the PSF of the FLR image. The model used in our experiments is
based on the theory (which is also supported by practical data) that terrain 3
reflectivity is independent of the viewing aspect angle except for extreme
angles.

Figure 1 shows the FLR geometry. Scanning an offset antenna pattern
around the vertical axis results in a ring or doughnut shaped coverage of

ground. At any scan position, the resolution cells are bounded by the an-

tenna half-power elliptical contour and a radial width equal to one-half
of the vertical ground intercept of the radar pulse length. This width is
a secant function of the range vector depression angle 6. The parameters
of the half-power ellipse are also given in Figure 1. 1In polar coordinates j
|

the FLR signal could be expressed in terms of the reference scene, u(r,p) by

@ (r) L, (r)
vir,g) = S° 277 uirts, o 44)dvds (6)
-0 () ”-ll(r)
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where r = htanf, wo(r) is the angular width of the elliptical contour from
its major axis, ll(r) and zz(r) correspond to the inner and outer ground
intercept of radar pulse width around the point and h is the height of the

radar.

Equation (6) could be generalized by associating a non-unity kernel "3
(or weighting function) as
P () L,y (x)

v(r,9p) = g w(r,s;o,¥)u(rts,pt¥)d¥ds @)
b-(po(r)\' -zl(r)

Eugation (7) could be simplified by making the assumptions that the

z weighting function is separable and is invariant with respect to ¢, giving

(&Po (r) ..12 (r)

v(r,9) = \
v=p (r) -4, (r)

wl(r,s)w2C¥)u(r+s,¢+Y)des (8)

Note that the point spread function (PSF) as defined above is spatially vary-
ing so that conventional Fourier domain Wiener filtering is not applicable.
: From the statistics of reference image and FLR image the point spread

function could be identified by assuming some models of the weighting func-

tions, e.g. Gaussain density, and then identifying the parameters of these

models by using mean square or other criteria.

2.4 Experimental Simulation Results

Figure 2 shows a 256 x 256 remotely sensed six-bit image. Considering .
this as only a single quadrant of a reference image,a 90° segment of an
FLR image was simulated using Eqn. (6). The blur-factor as reported in ]
our experiment is roughly a measure of average number of samples of the
reference image summed to get the intensity at each sample of FLR. Also,

the FLR images have been normalized to have the same mean square energy as 4

mn (]




] FIGURE 2

Square ERTS Image Used as SLR Image

FIGURE 3

SLR Image of Figure 2 With Axes Scaled by a Factor 0.98
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the reference image within the area covered by the FLR image.

Figure 3 shows a scaled reference image corresponding to Figure 2 with
a scale factor of 0.98. To simulate a doughnut-shaped quadrant of an FLR
image a doughnut-shaped quadrant of the square reference image was created
and sampled in polar coordinates with 4 samples per degree in azimuth and 200
samples along the elevation. Figure 4 shows this corresponding to Figure 2.
From this three different FLR images as discussed in Section 2.3 with para-
meters shown in Table I were obtained. Figure 5 shows one such image.
Both in Figure 4 and Figure 5 the image intensity outside the doughnut is
replaced by its mean intensity. For calculating the correlation function the
polar FLR images were transformed to cartesian coordinates square images.
Figure 6 shows the FLR image of Figure 5 with a 2 °misregistration. Figure
7 and Figure 8 show the logarithm of the magnitude of the discrete Fourier

transform of the images of Figure 2 and Figure 5 respectively. Figure 9

and Figure 10 are the high pass filtered images corresponding to the FLR
image of Figure 5.

The results of digital correlation experiments are summarized in Table
II. Figure 1l and Figure 12 show the correlation function and its cross-
section for images of Figure 2 and Figure 4. To improve correlation peaks
the reference image was high pass filtered (¢ = .05).

Figures 13-16 show the three dimensional plots of the correlation
functions for some of the entries of Table II. Here every fourth sample of
the 256 x 256 correlation function, has been plotted. Figures 17-23 show
the horizontal and the vertical cross-sections of some of the correlation
functions across the peak. 2

Figure 24 shows the effect of FLR beam pulse width product (or equiva-
lently blur factor) on the signal to noise ratio for the original and filtered

reference image. Figure 25 shows the effect of scaling the axes of the

12




reference image on the signal to noise ratio. Figure 26 shows the effects

of rotating the FLR image and the combined effect of scaling and rotation
on the signal to noise ratio. Finally, Figure 27 shows the effect of the
filter parameter o on the signal to noise ratio.

These experiments show that high-pass filtering improves the correlation
results considerably. From Figure 24 we see that the signal to noise ratio
of the cross-correlation between the reference image and FLR images is much
lower than that of the autocorrelation of reference image even for small
amount of blur. This is mostly because of the space-variant nature of the
FLR blurring mechanism rather than the low resolution of the FLR images.

Figure 25 shows that the signal to noise ratio drops sharply with
the scaling of axes and is almost linear. 1In the presence of large rota-
tional misregisteration the scaling has only marginal effect, as could be

seen from Figure 26.

2.5 Conclusions and Future Work

As demonstrated by results in the previous section the enhancement of
the on-board generated FLR images using Fourier domain high pass filtering
is quite useful in a more unambiguous location of the correlation peak.
Although this simple and adhoc technique gives good results, it does not
perform the optimum filtering of the point spread function of the FLR, which
is space-variant along elevation. A better technique is to identify the
models of the PSF and then do easily implementable optimum or sub-optimum
filtering.

Stochastic modeling of the reference image and the FLR image is another
area for future research. A considerable progress has been made recently in

this area for certain class 6f images (see Appendixes I and II). These

13




models could be used for identification of PSF and also in applying the

statistical detection theory to identify and locate the correlation peak.

T T—

—




FIGURE 4

Ring-shaped (Radial) SLR Image obtained from Image of Fig. 2
with intensity in the area outside the ring set equal to the
mean intensity of the image inside the ring
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FIGURE 5

FLR-1 Image (see Table I for parameters)

FIGURE 6

FLR-1 Image of Figure 5 Rotated Clockwise by 2°
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FIGURE 7

Logarithm of the magnitude of the Fourier transform of
SLR Image of Figure 2

FIGURE 8

Logarithm of the magnitude of the Fourier transform of
FLR Image of Figure 5
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FIGURE 9
o-Filtered image of the FLR Image of Figure 5, o = 0.8

FIGURE 10

o-Filtered image of the FLR image of Figure 5, o = 0.6
18
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TABLE II

AREA CORRELATION RESULTS

REFERENCE IMAGE IMAGE TO BE CORRELATED
SIGNAL
& FILTER SCALING FILTER ROTATION TO
. PARAMETER | FACTOR PARAMETER IN NOISE |  PEAK
. NAME o S NAME o DEGREES RATIO E LOCATIEE
|
1. SLR 0SS N RADIAL- 1.0 0.0 5.27 | (0,0)
i SLR )
2. |s» P VR B B FLR-1 1.0 0.0 2.66 | (0,0)
3. SLR W SSEE BE FLR-2 1.0 0.0 2.59 : (0,0)
4. |sLR 86 1 Lo FLR-3 1.0 0,00 1 242 | .0
5. |sir DS TERRT R FLR-1 1.0 0.0 | 8.62 | (0,0)
6.  |sLR O S FLR-2 1.0 0.0 4 . 814 | w0
3. SLR 6.5 ] . e FLR-3 1.0 0.0 | 7.13 . (0,0)
8. SLR 0.5 1.0 FLR-1 A0 0.5 i 7.5t { (1,48
9. SLR 0.5 1.0 FLR-1 1.0 L@ 6.27 | (-2,3}
10. SLR 0.5 1.0 | FLR-1 T 2.0 | 4.86  (-4,6)
1. SLR 0.5 1.0 ! FIR-1 1,0 | 4.0 | 3.16 | (-8,12)
12. SLR 0.5 1098 | MRl .60 1 0.0 | 7.56 | (-1,-1)
13. SLR 05 Joo 098 FLR-1 1.0 0.0 6.42 | (-3,
14. SLR 0.5 0.96 FLR-1 1.0 i 0.0 4.53 1 (5,4) i
15.  |siR 0.5 |  0.98 FLR-1 G 0.5 6.10 | (-4,0)]
16.  [sLR 0.5 | 0.98 FLR-1 L6 1 e 5.57 | (-5,1)
17. SLR 0.5 { 0.98 FLR-1 1B ] 2.0 4.74 1 (-7,4)!
18. SLR 5 0.5 ' 1.0 FLR-1 0.8 { 0.0 15.16 ‘ (0,0)
19. SLR i 0.5 1.0 FLR-1 0.6 | 0.0 26.45 | (0,0)
20. SLR 0.5 1.0 FLR-1 0.5 0.0 .06 | (0,0)
i
|
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III. STOCHASTIC IMAGE MODELING AND APPLICATIONS

The simplest stochastic model of an image, at least conceptually, is
the joint probability density function. However, for practical reasons
(of dimensionality), it is often convenient to work with a two dimensional
stochastic difference (or differential) equation representation. State
variable models, which convert two dimensional images into a sequence of
one dimensional vectors, have been developed and implemented for a variety
of image restération problems by Nahi, Silverman, et. al [1,2]. Ekstrom
and Woods [3) have suggested a two dimensional spectral factorization techni-
que for developing non-symmetric half plane (NSHP) models which can be used
for recursive image processing applications.

We have demonstrated that the theory of Partial Differential Equations
(PDEs) provides a strong framework for studying many problems in image pro-
cessing {4,5]. Many of these models have been found to be superior to a
widely used separable covariance model for images in image restoration ap-
plications [6]. These models are divided into three classes according to
the classification of PDEs as hyperbolic, parabolic and elliptic equations.
It has been shown in [4] that these classes of PDEs could realize different
types of correlation functions. Thus, a given correlation function may be
best realized (in terms of the minimal order of the PDE) by a particular
class of PDEs. For example, certain isotropic correlation functions which
fit low resolution images quite well, are best realized by elliptic PDE
models.

Our results on image restoration have demonstrated that each class of
PDEs leads to a different type of computational algorithm. For example,
the hyperbolic equations yield causal vector-recursive, Kalman filtering

type algorithms; the parabolic equations yield semi-causal algorithms,i.e.,
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algorithms which are causal recursive in one dimension and noncausal in the
other; the elliptic equations yield noncausal algorithms. These different
structures were shown to give new and different computing architectures as

well as performance bounds on the processing technique.

3.1 Causal Models and Hyperbolic PDEs

Consider the operation equation defined on (0,») x (0,®)

5£ v = azv + a oY o v + a,v 9)
1L Oxdy 1 3x 2 dy 3

where v = v(x,y). Here Jil is a second order hyperbolic PDE operator such
that'gglv(x,y) = f(x,y) is a well posed initial value problem. A finite
difference approximation of this equation gives a discrete random field
representation of the type (to be called Cl)

u (10)

= + - +
T % T M2 %l %% 50T Py
This is a well known model used for DPCM coding of images. For ay = aa,
this equation is an exact realization of the separable covariance model

given by

. = o2 lklH 2]
ROk £) = E[uy ju (00 = o%p ;

2 2
where E[ui,j] = 0 and E[ui’j] = 0.

The various parameters of (l0), are identified as a =a, =p, a3 = pz,

2,2
Eici’j] =0, E[eijei+k,j+£] = (l=-p0) 6k,062,0 and 6n,m represents the
Kronecker delta function.
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3.2 Semicausal Models and Parabolic PDEs

Consider the heat equation operator

;tzv = vy o 15 + av (11)
This 18 a second order parabolic PDE operator and leads to a well posed
initial value problem in y dimension and well posed boundary value problem
in x dimension. A finite discrete approximation of this gives a semicausal
representation (SCl), which is causal in j variable and noncausal in i vari-

able, of the form

= a(u +

- i-1,5 © Yi+1,j

& ) YUty (12)

where || <% |Y] <1 and |20+ v] <1

This and other semicausal models lead to computationally desirable, the sd-
called, hybrid algorithms. A hybrid algorithm is a recursive algorithm ob-
tained after transforming each row (or column) of the image by a unitary
transform. For such models, it has been shown that a 2-dimensional image
can be decomposed into a sequence of one dimensional, independent Markov
processes. The statistics of certain semicausal models have been shown to

fit high resolution images quite well [4,6].

3.3 Noncausal Models and Elliptic PDEs

Consider the well known Poisson operator equation

(i.JV et + vyy + av (13)
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This is a boundary value elliptic PDE. Such equations have been shown to
yield noncausal stochastic image models and have shown to fit, quite well,
satellite and other remotely sensed images, which have nearly isotropic
covariance functions. Noncausal models have also been useful for represent-
ing images with separable covariance functions [4,67. The adavantage ot
such representations is that often, they yield computationally fast Kar-
hunen Loeve (KL) expansions of image data and have proven useful in resto-

ration and data compression of images.

3.4 Application to Rdar Image Area Correlation Techniques

For the sake of clarity in understanding, we shall work here with one
dimensional images defined over an interval {-a,a]. Correspondingly the

area correlation is defined as
a
et = %a 1) + 01,008 (142)
-a

In practice the reference image I, could be considered as representing the

1

terrain features very accurately and I, a blurred image of the terrain

2

given as
ca
Bate) = L Ris - SHE K (14b)

where h(x) is the point spread function of the imaging optics. As a first
approximation h(x) is assumed to be spatially invariant. Extension to spa-
tially variant case is possible (although the computational complexity may

increase). Combining (l4a) and (14b) we get
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a
et =% { (ne - 91,691 (x + ©agae’ (14¢)
-a“
For evaluation of an area correlation system, generally, the first two mo-
ments of c(x) are needed. From above these are obtained, assuming I1 to be

a stationary process whose autocorrelation is R as

11’

m G & Ee) = 38 ({ e - £9r, (8 - €7+ x)agae’ (152)

my 00 = B’ 4 | | { { nee - eonem - 10m0r, @)1, 60+ 1,001 G0omy 14

dEdE’dnan”’  (15b)

Equations (15a) and (15b) can be evaluated, at least in principle, if the
second and fourth order statistics of the random process Il are known.
Measurement of such statistics from available data is impractical even when
stationarity and ergodicity assumptions are made. This is beeause in (15b),
for an N point discretization of Il(x), at least N3 coefficients for the

fourth order expectation will be required. For two dimensional images,

the dimensionality will be 0(N6). Hence, it is desirable to have a dif-

ferent stochastic representation for I1 so that all the statistical para-

meters can be calculated from it. One way is to determine a stochastic PDE
representation of the two dimensional image Il(x,y) and determine all the

statistics from that model. This approach would be the 2 dimensional equi-

valent of calculation of, say, the autocorrelation function of a one dimen-

sional random process from its stochastic, ordinary differential equation .
model. The difference would be that one would have to solve PDEs for two

dimensional variables.
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IV. REAL-TIME RF SIMULATION OF RE-ENTRY VEHICLES

The availability of an image model is particularly useful in real time
simulation of radar imaging systems. For example, in a hardware in the loop
simulation of a terminal guidance system at the Advanced Simulation Center
of U.S. MIRADCOM, Redstone Arsenal, Alabama, it is planned to generate, in
real time, image signals as shown in Fig. 28. Here, the re-entry vehicle
(RV) flight hardware (Radar scanning antenna, the radar receiver electronics,
and the correlator unit) is mounted at one end of a chamber and the scanning
antenna (i.e., the FLR) is allowed to rotate, as it operates in the real
environment. This radar antenna scans a large array of antennas located
at the other end of the RFSS chamber. Digital image signals generated by a
digital computer are converted to analog video signals and are put on Radio
Frequency (RF) carrier pulses for transmission from the array. By a sophis-
ticated computer controlled switching method, signals are radiated from
the array such that they are synchronous with the scanning antenna position.
The signal power levels and array position control are fine enough to simu-
late the real time radar return signals received by the RV. The reference
and the live FLR images are updated in real time as the trajectory of the
RV changes. A sequence of reference images is known in advance at few
fixed points on the trajectory. The reference image at any point is prepared
off line and the relevant images stored in advance for signal generation.

Fig. 29 shows a more detailed design architecture developed by the prin-
cipal investigator during an LRCP research effort for a real time hard-
ware in the loop simulation (at U.S. MIRADCOM) of an area-correlation system.
The principal advantage of these simulations is that by including complex
hardware in the simulation loop, realistic flight test data can be obtained
for system evaluation. This will of course minimize the number of actual
test flights needed and will therefore reduce test costs.
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ABSTRACT

Stochastic representation of discrete images by
partial differential equations proposed earlier in [1]
is used for filtering of noisy images. Comparisons
among various representations and their relative
effectiveness in modeling the actual statistics of the
images is shown by examples. Certain image decompos-
itions resulting in fast filtering algorithms are
given. The results are also compared with spatial
averaging and Fourier domain Wiener filters. Results
show superiority of noncausal and semicausal models
over causal and/or separable covariance models.

I. INTRODUCTION

In an earlier paper [l] image representation
by partial differential equations (PDEs) was considered.
It was shown that corresponding to the PDE classifica-
tion of hyperbolic, parabolic,and elliptic systems,
three different stochastic representations viz., causal,
semicausal,and noncausal representations are realized.
These representations have different spatial structures
and are realizations of different type of covariance
functions. For example, certain elliptic equations can
realize certain isotropic covariance functions which
cannot be realized by hyperbolic or parabolic equations.
On the other hand certain covariance functions could be
realized by all the three classes of representations.
Use of PDEs directly for image representation bypas-
ses the difficult problem of two dimensional spectral
factorization. The experimental results of [1,2] have
shown that the covariance functions realized by some
of the PDEs approximate the actual covariance of dif-
ferent image data better than the commonly used covari-
ance function models for those image data.

In this paper we consider the problem of linear
filtering of noisy images represented by different PDE
mocels. It is shown that the causal, semicausal, and
noncausal models give rise to recursive, hybrid or
semi-recursive, and transform domain or nonrecursive
filtering algorithms. Recursive filtering for images
has been considered earlier by many researchers [3-7].
Typically in these approaches, one insists on a causal
image representation e.g., state variable or two dimen-
sional autoregressive models, such that recursive fil-
tering equations of Kalman and Bucy, or equivalently,
those of Aasnaes and Kailath (8) are applicable. By
hybrid or semirecursive filtering we mean a filtering
method which is non-recursive in one of the image
demensions and is recursive in the other. Algorithms
of this type include those vector recursive algorithms
where the state variable vector contaius an entire

Presented at the IEEE Computer Society Conference
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June 6-8, 1977.
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column (or row) of the image, and have been considered
by Jain (9], Murphy and Silverman (10] and others (11,
12]. Nonrecursive or transform domain algorithms arise
quite naturally for noncausal models and lead to smooth-
ing equations very similar to discrete Fourier Trans-~
form (DFT) domain Weiner filters. Similar algorithms
have been studied previously in [19].

Although some of the image models (and their assoc
iated filter equations) considered here have been
studied earlier[9,13,19),this paper reconsideres these
as well as some new models in the more general framework
of PDEs. This has several advantages. First, the well
developed theory of PDEs offers many analytical answers
to problems related to stability, stationarity, perfor-
mance bounds, etc. Second, the different existing nu-
merical methods for solving PDEs hold promising possi-
bilities for implementing filter solutions. Finally,
the PDE theory lends insight into certain filtering
phenomena. An example of this is shown in section 5
to explain the performance of a spatial averaging
filter. Several filtering experiments on actual images
and comparisons of different models, old and new,
exemplify the utility of our approach.

In section 2 we briefly review the results of (1]
that are used here. Specifically, the different models
identified in [1] are summarized and some notation is
established. In section 3, 4 and 5 the filtering algor-
ithms associated with the causal, semi-causal, and
noncausal models respectively, are described. Filteiiag
experiments on four different images have been performed.
In section 6, the results of these experiments and their
mutual comparisions as well as with standard Fourier
domain Wiener filtering techniques are discussed. Con-
clusions and possible extensions of this work are given
in section 7.

2. PDE IMACE MODELS

Stochastic PDEs have been studied earlier for
various applications [14~18]. In a recent paper Jain
[1]) has studied the possibilities of modeling actual
image data by PDEs and many different models have been
suggested. Table 1 summarizes some of those models
which we will be studying here for filtering applica-
tions,We start with a PDE operator L(3/3x,3/3y) and
approximate it by discrete operator D(%; , '2),obta1ned
by a suitably chosen finite difference method. Then
we assume an image representation of the form

D (“i,j] = ti.j'

where u, , represents the (relative) brightness of the
zero mekﬁjunit variance image at the point (i,j) for
-m<i,j<e and €, is a two dimensional zero mean dis-
crete white noibl or some sort of moving average process
with absolutely continuous spectral density function.
Clearly, a. and e, in D(e,,®,) can also be chosen to be
the two dimensional ¢ - transform variables. If we de-
note 5;('1"2) to be the spectral density function of




{c } for nl-exp(jw Y 8, = exp (jw,), then the spec-
tr&ljdenslty functioh of {uy 3} 1s iiven by

' ¥ =1 =

bu(cl.az) SL(al.ez) /{D(-l.ez) : D(-l.zzs).

he covariance function of (u1 j) is obtai Sd quite
asily by the Fourier inverse of S, (ed¥1, eI¥2), which
could be accom iished by a suitable FFT algorithm.
Table I lists the forms of S_ chosen for various models.
The values of different parameters identified for these

' models, for 3 256x256 Girl 1mgge,are listed in Table
LI. Here 2° represents E[L1 ] and is the value of
S¢ (0,0). Table I also shovs'éhe spatial structure of

the different models arising from a finite difference
approximation of the operator L. Here, if u corres-
ponds to the point marked A, then the spatiai'étructure
shows all other points that are used directly in the
prediction of A. The stability of various models and
their stationarity (asymptotically) is assured by im-
posing restrictions on the model parameters which are
consistent with the well posedness of the original
PDEs. The parameters of Table II satisfy those re-
strictions and realize stationary fields. Parameters
for some other images and related details can be found
e [8,2).

We will consider the simplest filtering problem
where the observations are given as
u

)

¥i.9 7 Y3 T N,y

where (1,j) belongs to a set I, of integer pairs
and {nx } zis a zero mean white Gaussian noise of
variancéj 0n - The set 1 will be suitably defined for
different image models as we proceed in the paper. We
would be interested in the various predictors, on-line
filters and smoothers of u , glven the observations
of (1). It should be noteé'éhat the models are
stationary for infinite images. To apply them for re-
storation of finite size images certain initial and/or
boundary conditions on the models will have to be
specified. If stationarity is to be retained, the
boundary conditions should be consistent with the cov-
ariance function realized by the model. In practice,
these consistent specifications may be difficult at
times and one may, instead, settle for a nonstationary
model which is asymptotically stationary, by assuming
a more convenient model for the boundary variables.

In fact we will see that, implementation wise, some of
the simplest algorithms are obtained for nonstationary
(but spatially invariant) models whose boundary con-
ditions are deterministic. This would result in sub-
optimality, which depends on image size, and may not
always be significant compared to the error in modeling
Throughout the paper we will attempt to point out such
optimality vs feasibility tradeoffs.

3. CAUSAL MODELS

Causal models considered here result from a
hyperbolic system of PDEs and have spatial structure
of the form i

u = ay + a.u -a.u +¢ '
1,3 171-1,3 2°4,3-1 371-1,3-1 1,3
For a, = a,a, this results in an often used separable
covariance function. Such a model has been con-
sidered by Habibi (6] for recursive filtering, but the
equations developed there have been shown to be in
error by Strintzis (7). Recently Bary, et al [17] have
developed some asymptotic recursive filters for such
models. More recently Wong [16]) has mentioned that two
dimensional recursive filter for the continuous equiva-
lent of this model exists and that the filtering equa-
tions are rather complicated. Here we consider the
recursive filtering equations for the discrete model
of (2) and show that these equations may be obtained
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from a set of one dimensional vector recursive equat-
ions.
If u, denotes the Nxl column vector of an NxM image

then (2) éan be written in vector form as

L Lou + €.+

I e 1S M e
where L. and L, are nonsingular lower triangular Toe-
plitz matrices and b, are Nxl vectors containing initial
conditions. If b 14 orthogonal to u, . and €, and if
it is a white noiae process (for 33-0 a, this 13 true)
and if we define fj = ¢, +b, then (3* gecones a vector
Markov process J ] 2
-1
uj L1 Lz 4
The observations of (1) can be written in a vector form =
as

lejsM, 3)

"j-l +f 6) 3

o S B
Various vector recursive filtering equations can now be
written quite straightforwardly. For example, if a
column vector is scanngd at a time and the previously
scanned vectors are used to predict the next column
vector, then the Kalman filtering equation for one
step predictor can be written as

1

(5)

a, =L "L 0+ -4 o =

™ty by J(yj “j)'“oo' (6)
where Gj is Kalman gain matrix that is obtained by
solving-an associated Riccati equation. For a true

two dimensional recursive filter suppose the image is a
scalar scanned image, e.g., raster scanning, say from
top to bottom (along i) and left to right (along j).
For such a scanning the one step predictor, Uislg?
is defined as the best linear estimate of Ui J'éiven
the observations upto the previous scan point '“i.e.,

y . The solution of such a recursive filter, results
1%'3 one step predictor given by

c i
Vi+1,4 = xj(1+1) (7)
where X; is a "state vector" for the estimates at
scanner~position (1,)) and satisfies
1+l i 1 Bk %
- +h - = , OgigN-1 8
Xy Xy PO ek £ (8)
£=1
- Tag oy A _

Here x1 is a Nxl column vector representing the best
estimaée of jth column vector u, given observations only
up to yi j; Vi 3 ig the scalargscanner innovations
process,’“and "'’ b7 1is another gain vector and 1is a fun=
ction of G, of (6) Note that the initial condition of
(8) requirés first solving the vector recursive filter
equation (6) up to step j. Hence, we have to solve two
sets of vector equations i.e., (6) and (8) one in the
horizontal (j) direction and the other in the vertical
(1) direction to obtain a two dimensional scanner re-
cursive filter. The major computational effort is in
the solution of the Riccatt equation for G, ,and hi. For
large image size Gj and h; can be replacea by tﬂeir
steady state values and thl resulting filter equations «
then require about O(N°) operations per vector step

(or a total of about 0(N3) operations). Further simpli-
fications are possible by noting that G, becomes a
Toeplitz matrix when i,j #= and (6) redécca to convol=-
ation operations. For the separable model (i.e. for

a3 = 0112) an iterative, smoothing filter is also

possible. If we write (1) in matrix form
U=Y +n, (10)
2
and 1f !["1.1' "k,l] - 9, 61.& v 61,( then the




smoothed estimate of the image using Cl model can be
found by iterative solution of the following equation

in the sine transform domain [2]*

2
[*]
r. - - =
Uk+l+ _BIO_ Q Uk+1 Q Y Bk' UO 0' (11)
where
2 g 2
B=s a DU D+-1-2_ (bu O+quD) (12)
k n k B 2 k k7
a=o?/-0%) ,
and Q and D are NxN matrices defined by
1 , 1i=j
4= d-a o |3l = (13)
4] s, oOtherwise,
dl.l - dN,N -1, di,j = 0, otherwise, where

a = o/(1+92). The reason we opt to solve (11) and (12)
in sine transform domain is that the sine transform
diagonalises the matr}cea Q and D and then they could
be solved as set of N scaler independent equations,
thus resulting in computational savings. Details of
derivations will be given elsewhere.

4. SEMICAUSAL MODELS

If u, denotes the Nxl column vector of an NxN
image thea. the semicausal models SCl and SC2 given in
Table I can be written as

Quj-Puj

where Q is an NxN symmetric, tridlagonaf, Toeplitz,
matrix defined in (13); P = yI for SCl and P=pQ for
SC2 models; and b, is a Nxl colmn vector consisting of
only boundary valées identified as

ptey*hy ls Js N (14)

T
0.(uo’j,0,...,0,uN+l’j) , for SC1,

b =
b
a.(u, .- pu 0,...,u -pu )T
0,3 0,3-1""" "UN+l,] T N+1,3-17, for
Sc2.
The statistics of ej could then be identified as
E[cj] =0 , for SCl1 & SC2,
and 2
% 8 1 éj.k' for SC1
E[cj.ck] -{ (15)
B8

2
QG k’ for SC2
j'

The semicausal sturcture of (14) is evident by
noting the noncausality of any element u of the
image in the i variable and its causalit}'ln j varia-
ble. Any attempt to reindex these equations as re-
cursive in the 1 variable would result in unstable
causal systems and will no longer represent (asympto-
tically) stationary random fields [9]..

Letting b, contain arbitrary boundary values,
randog or dete}-int-tic. we define two processes u
and uJ as ]
Qu;’-ru;’_1+ej, ug =0 , (16)
and
b b b
Q uj P uj-l + bj’ up =y - (17)

For a nonsingular matrix Q, (14) will have a unique

solution. From this uniqueness of u, and linearity of
(14) 1t follows from (16) and (17) that u, has the
stochastic decomposition

u, = u’ + ub » 183N, (18)

3 3 3

The vector u, is called the boundary response of u, and
is completel; determined by the initial and the boAndary
values of the image. This decomposition would be orth-
ogonal if (bj) and (cj) are uncorrelated sequences i.e.,

T
Ele b * - 0 Vv
i) Tk
The above condition is always satisfied for the SC2 model.
Note that (16) is now a nonstationary Markov process
starting with a zero initial state. Using (18) in eqn.
(5) the observations can be written as

o o b

Yy Yy + u 19)
where

3 )

Yj uj + nj. (20)

Now noting the fact that the discrete sine transform

Y diagonalises any tridiagonal symmetric Toeplitz mat-
rix, such as P and Qthe vector equations (16), (17), (19)
and (20) can be converted into scaler decoupled set of
causal Markov representations by taking their sine
transform. The Kalman filtering equations for the re-
sulting equations in the Sine transform domain are
given quite easily as follows.

One Step predictor

- ~ " n 2 _
vj+1- c vj+ C'Yj'fj('j-vj)/on . vO'O (21)
;j+1- cz.;J. fj + dz. 02 5 ;0 =0
2 2.-1
fj a+ Yj/an )
ot = E[ejz(i)] 153sN.
On-line filter
R " 2
vj - vj + YJ . fj (aj - vJ )/0n (22)
Interpolator (Smoother)
A, @
° 2 w
wy = c.fj.wj+1 +fj(cj--vj)/0n N4 " O
where,
o
Y
e RS TR T
c() = y/A, and d() = A, ' for scl,
c(1) =p  and d(1) = A for sc2.

All the above equations for filters are decoupled in
the variable i and can be solved independently for
each i.(The subscript i has been omitted for notational

simplicity). From these the spatial domain image es-
timates are given by inverse unitary transformation
(vleyT oy, 1.e.

*

o* b * b

- +u, =V¥y +u

il dedls 33

The semicausal model recursive algorithm is, very sim-
ply, as follows. From the given boundary values (or

v , etc.

*The sine transform is related to the discrete Fourier transform and has a fast implementation algorithm similar

to FFT algorithm.
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their estimates) first calculate uh, and determine the
modified observations y,. Then trAns(orm y. by the
(tirst) Sine transform Jnd solve the desired recursive
filter equations. The inverse transformation of the
recursive filter estimate and adding ub gives the de-
sired filtered image vector. For deta{ls of SC2 model
see [9].

5. NONCAUSAL MODELS

From the spatial structures of the noncausal
models NCl, NC2 and NC3 (see Table 1) it can be seen
that they are nonrecursive in both the indices i and j.
Any attempt to reindex them so as to yield a recursive
relation in either of the indices would result in an
unstable system. Let U be an NxN image matrix and U
be an N4xl vector obtained by the lexicographic order-
ing of U, then the noncausal models can be written in
the form

JU = € + B (24)

where J is an Nszz matrix, ¢ is the Nle vector cor-
responding to the matrix € containing {ci }, and B
is a N“x1 vector whose entries depend only'én the
boundary values. From (24) one gets the decomposition
U=0°+70 or u=0+1P

Pagth LWLt (26)

(25)
where

Note that ﬁb is completely determined from the boundary
values and is called the boundary response. Let

R BE [E.E) = e, s, (27)
then from (26) and (27) the covariance matrix of ﬁo is
obtained as

1 1

T
R°a E(T°.0° 1= 8207tz gL, (28)
The structures of the matrices J and I resulting from
the PDEs considered is such that the Kronecker product
¥ @Y of the Sine transform ¥ contains all the eigen-
vectors of J and L for NCl and NC3 models (For NC2
model this is still a good approximation). Therefore
¥@Y becomes the Karhunen Loeve (KL) transform of U°.
Hence, if

¥ = (@¥). 0° or V= 9Oy, (29)
ther V° is the K-L transformations of U° and its ele-
ments will be uncorrelated. As before, the observa-
tions can also be decomposed to give

=Y +0° , (30)

where Yo_ Uo %0 : (31)

Now if the boupdary values (or equivalently UD) were
deterministic we can obtain the Wiener filter equa-
tions for (25) and (31) in KL transform (¥) domain as
N¢ decoupled scaler equations and are found to be

2 2
o .

LR Vi e
1']

55" %50 "3

2 2 42 lgi, jeN.
8™ + s 'ti,j/kl.j >
- -, E[n 2]0[

where V = YUY, 2 = ¥YY, C = YBY , 0
Jand 13 14

and k are the N” eigenvalues of
L res&éétively. The optimal smoothed estimate of ghe
image 13 then found by inverse sine transform of V ,
if.e.,

* *
U = ¥y

In practice the boundary values may not be determinie-

tic. In that case, these are estimated first and are
used to determine U”. This will make our scheme sli-
ghtly suboptimal although its significance decreases
as the image size increases. See [1Y] for an analysis
of boundary effects.

6. EXAMPLES AND DISCUSSION

The filtering techniques discussed in the pre-
vious sections were implemented on four 65x65 blocks
of four 256x256 images corrupted by white Gaussian
noise. The Signal to Noise ratio (S/N) values of 1,
2, and 5 were used. This ratio is defined as

Standard deviation of the signal
Standard deviation of the noise

S/N =

The various models are compared mutually as well as
with their corresponding Fourier domain Wiener filters
and spatial averaging filters. The spatial averaging
filter averages each pixel with the nearest four points,
i.e.,

* - I 1

i3 7 Y g 0 3 5 5 M, )

For causal model Cl the iterative solution of (11)
and (12) was used. For solving semicausal and non-
causal filter equations the boundary values were first
estimated separately. For these models the size of
the image block U was taken to be 63x63 and with boun-
daries the total block size becomes 65x65. The four
boundary vectors were estimated independently using one
dimensional Fourier-Wiener filter and first order Markov
statistics.

These boundary estimates were used (instead of the
actual boundary values) in computing the boundary re-
sponse functions. For NC2 model two boundaries on each
side of the image are needed and we have assumed the
outer most boundaries to be zero.

Tables I1I, IV, and V show the comparisons among
the performance of various filters for S/N of 1,2 and
5 respectively. The Cl, SC2 and NC3, all correspond
to the separable covariance model and hence their re-
sults differ only in terms of the requirements of
knowledge of the boundaries. As expected, their per-
formance is quite close and the difference depends on
how good are the boundary estimates. Their poor per-
formance for the blocks of the MOON and ERTS images
was found to be due to the fact that the one step cor-
relation parameter, p, for these blocks was significan-
tly different from the one measured for the larger
256x256 images. On the other hand, the other models
(SC1, NC1 and NC2) perform relatively very well on
these blocks, This implies that the latter models
are much more stable, i.e., they are relatively in-
sensitive to the local changes in statistics.

The superior performance of the NCl and SCl models
is evident from their filter performances. Except for
the couple image block the performance of NCl is the
best in almost all the cases. In most cases NCZ per-
forms better than the separable models but is poorer
than NC1 and SCl models. The superior performance of
these models may be attributed to the superiority of
their fitting to the image statistics.

The simple, adhoc, Spatial Averaging filter perfofms
surprisingly well, especially for moderate signal to
noise ratios. Note that it performs better than the
Cl, SC2 and NC3 models. This can be explained by the
fact that the transfer function of the spatial averag-
ing filter is a fairly good approximation of the
Fourier-Wiener filter corresponding to the NC1l model,
which as we have seen here, is a very good model for
filtering of images. Tables III to V also show that
almost all the filters perform somewhat better than
their corresponding Fourier domain Wiener filters.

This is because for finite size images, the Fourier
domain samples (of observations and the original data)
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are correlated and the corresponding Wiener filter is
suboptimal [20). The semicausal and noncgusal filter
are also suboptimal whenever the boundary values are
not known exactly. However, this suboptimality is less
significant than the Fourier domain suboptimality.

Fig. 1 shows some of the images resulting from
the application of the foregoing filters. The perfor-
mance differences due to different filters were also
evident on a visual display.

7. CONCLUSIONS

In conclusion, it was demonstrated that different
PDE classes yleld different filter structures and also
different filter performances. Many of these models
of fer substantial advantages, both in terms of compu-
tational complexity as well as filter performance, over
the conventional, separable image covariance models.
More general PDE models may be used to achieve even
better results. Also, these models may be used for
other two dimensional signal processing applications
such as data compression, detection, synthesis,etc.[21].
Inevitably, in all these applications numerical methods
for solving PDEs will play a major role.
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a) Original

c) Separable Model F-W Filter d) NCl Model F-W Filter

e) SCl Model Filter f) NCl1 Model Filter

Fig. 1: SMOOTHING OF A 64 x 64 BLOCK OF THE GIRL IMAGE
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TABLE II

? ACTUAL PARAMETERS MEASURED FOR THE 256x256 GIRL IMAGE TO MATCH THE
16x16 COVARIANCE MATRIX OF THE IMAGE TO THAT OF THE MODEL FOR VARIOUS

MODELS..
E %
- S
NO. MODEL PARAMETERS
Cansal o = 0.962, . 82 = (1-p2) = 0.0085.
¥ cl
Semicausal a = 0.4275, vy = 0.1415, 82-0.0190.
2. scl
Semicausal p = 0.962, 82=(1-p%)2/14p%)=0.0029,
3 sC2 a = p/(l4p2).
Noncausal a = 0.2696.a1'0.95.a " 62-0.0764.
& NC1
Noacausal a =0.249% , B2 = 0.0053.
s. NC2
Noncausal b = 0,962, B =) ] (14p2) 2 =0.0015,
6. NC3 a = p/(1+p?).
TABLE 111

COMPARISION OF VARIOUS RESTORATION FILTERS IMPLEMENTED ON 65x65 BLOCKS OF
DIFFERENT NOISY IMAGES FOR SIGNAL TO NOISE RATIO =1. THE ENTRIES SHOW THE
IMPROVEMENT IN SIGNAL TO NOISE RATIO IN DECIBELS.

S. FILTERING GIRL MOON COUPLE ERTS
__NO. MODEL IMAGE IMAGE 5 IMAGE IMAGE
1. i b 5.23db  [5.134b | S.14db | 5.31 b
Spatial Averaging
Causal Cl 9.12 db 7.20 db 8.10 db 8.42 db
2.
Fourier-Weiner
(F-W) Filter 8.38 db 7.32 db 7.98 db 8.24 db
3 Semicausal SC1 9.46 db 8.89 db 9.30 db 9.64 db
¥ F-W Filter 8.55 db 8.78 db 8.32 db 8.82 db
4 Semicausal SC2 8.87 db 6.61 db 8.27 db 8.54 db
it F-W Filter 8.38 db 7.32 db 7.98 db 8.24 db
5 Noncausal NC1 10.05 db 8.75 db 8.70 db 9.88 db
4 F-W Filter 9.00 db 8.58 db 7.78 db 8.80 db
6 Noncausal NC2 9.48 db 8.05 db 8.04 db 9.32 db
s X F-W Filter 8.24 db 7.87 db 7.02 db 8.08 db
7 Noncausal NC3 8.92 db 6.59 db 8.31 db 8.46 db
g F-W Filter 8.38 db 7.32 db 7.98 db 8.24 db
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TABLE 1V
COMPARISIUN OF VARIOUS IMAGE RESTORATION FILTERS IMPLEMENTED ON 65x65 BLOCKS
; OF DIFFERENT NOISY IMAGES FOR SIGNAL TO NOISE RATIO =2. THE ENTRIES SHOW THE
IMPROVEMENT IN SIGNAL TO NOISE RATIO IN DECIBELS.
S. FILTERING GIRL MOON COUPLE ERTS
NO. MODEL IMAGE IMAGE IMAGE IMAGE
2
Four Point
1. Spartal Aebraging 4.75 db 4.32 db 4.54 db 4.50 db
. - Causal Cl 5.23 db 3.00 db 4.36 db 3.92 db
> Fourier-Weiner
(F-W) Filter 4.59 db 3.01 db 4.34 db 3.62 db
L 3 Semicausal SC1 5.68 db 5.00 db 6.06 db 5.25 db
: F-W Filter 4.82 db 4.82 db 5.09 db 4.64 db
4 Semicausal SC2 5.01 db 2.51 db 4.44 db 3.88 db
: F-W Filter 4.59 db 3.01 db 4.34 db 3.62 db
5 Concausal NCl1 6.64 db 5.29 db 5.54 db 5.85 db
¢ F-W Filter 5.79 db 5.15 db 4.71 db 5.05 db
1 6 Noncausal NC2 5.77 db 4.00 db 4.24 db 4.65 db
> F-W Filter 4.42 db 3.70 db 3.21 db 3.43 db
7 Noncausal NC3 5.02 db 2.49 db 4.44 db 3.82 db
; : F-W Filter 4.59 db 3.01 db 4.34 db 3.62 db
TABLE V
COMPARISION OF VARIOUS IMAGE RESTORATION FILTERS IMPLEMENTED ON 65x65 BLOCKS
! OF DIFFERENT NOISY IMAGES FOR SIGNAL TO NOISE RATIO =5. THE ENTRIES SHOW THE
" IMPROVEMENT IN SIGNAL TO NOISE RATIO IN DECIBELS.
g FILTERING GIRL MOON COUPLE ERTS
NO. MODEL IMAGE IMAGE IMAGE IMAGE
! Four Point
{ i Spectul. Aversglng 3.29 db 1.72 db 2.80 db 2.80 db
i Causal Cl 0.91 db | -1.78 db 0.18 db | -0.96 db
| 2y
| Fourier-Weiner
g (F-W) Filter 0.49 db | -1.86 db 0.22 db | -1.22 db
i % ffﬁ‘::‘;““ Sk 2.11 db 1.08 db 2.81 db 1.14 db
‘ & s 1.31 db 0.94 db 1.80 db 0.72 db
4 Semicausal SC2 0.78 db | -1.92 db 0.22 db | -1.04 db
% F-W Filter 0.49 db | -1.86 db 0.22 db | -1.22 db
s Noncausal NCl 2,66 db 2.02 db 2.24 db 2.60 db
? F-W Filter 2.54 db 2.04 db 2.02 db 2.36 db
5 " Noncausal NC2 2,06 db | -0.39 db 0.67 db 0.08 db
" F-W Filter 0.56 db | -0.64 db | -0.68 db | -1.09 db
3 Noncausal NC3 0.79 db | -2.01 db 0.22 db | -1.02 db
? F-W Filter 0.49 db | -1.86 db 0.22 db | -1.22 db
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APPENDIX II

1. AN OPERATOR FACTORIZATION METHOD FOR RESTORATION OF BLURRED IMAGES

A problem of restoration of images blurred by space invariant point
spread functions (SIPSF) is considered. The SIPSF operator is factorized
as a sum of two matrices. The first term is a polynomial of a moncirculant
operator P and the second term is a Hankel matrix which affects only the
boundary observations. The image covariance matrix is also factorized into
two terms; the covariance of the first term is a polynomial in P and the se-
cond term depends on the boundary values of the image. Thus, by modifying
the image matrix by its boundary terms and the observations by the boundary
observations it is shown the Wiener filter equation is a function of the
operator P, and can be solved exactly via the eigenvector expansion of P.
The eigenvectors of the noncirculant matrix P are a set of orthronormal
harmonic sinusoids called the Sine transform and the eigenvector expansion
of the Wiener filter equation can be numerically achieved via a fast Sine
transform algorithm which is related to the fast Fourier transform algorithm.
The factorization therefore provides a fast Wiener restoration scheme for
images and other random processes. Examples on 255 x 255 images are given.

KEY WORDS: Wiener Filtering, Karhunen Loeve Transform, Image Restoration,
Image Processing

PARTIAL DIFFERENTIAL EQUATIONS AND FINITE DIFFERENCE METHODS IN IMAGE PROCESSING

PART II: IMAGE RESTORATION

Application of Partial Differential Equation (PDE) models for restora-
tion of noisy images is considered. The hyperbolic, parabolic, and elliptic
classes of PDEs yield recursive, semirecursive, and nonrecursive filtering
algorithms. The two dimensional recursive filter is equivalent to solving
two sets of filtering equations, one along the horizontal direction and
other along the vertical direction. The semirecursive filter can be imple-
mented by first transforming the image data along one of its dimensions, say
column, and then recursive filtering along each row independently. The non-
recursive filter leads to Fourier domain Wiener filtering type transform do-
main algorithm. Comparisons of the different PDE model filters are made by
implementing them on actual image data. Performances of these filters are
also compared with Fourier Wiemer filtering and spatial averaging methods.
Performance bounds based on PDE model theory are calculated and implementa-
tion trade-offs of different algorithms are discussed.

KEY WORDS: Recursive Filtering, Two Dimensional Filtering, Kalman Filtering,

Wiener Filtering, Image Restoration, Partial Differential Equa-
tions
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3. FRAME TO FRAME RESTORATION OF DIFFUSION IMAGES

Frame to frame image data is acquired in many applications such as Radar,
Biomedical, and Television imaging. In many situations, the imaging pheno-
menon can be modelled by a diffusion process. The sequence of image frames
obtained may represent the observations of that process. Here, we consider
the problem of recursive filtering of such images on a frame to frame basis.
The major difficulties are computational because of three dimensional struc-
ture of the problem. 1In this paper a constant coefficient diffusion system
is used for an interframe image restoration problem. Also, a two dimensional
problem of restoration of blurred images can be solved by imbedding it in a
three dimensional recursive filtering problem without blur. The model struc~
ture leads to a computationally feasible filtering algorithm achieving large
reduction of dimensionality and is useful in real time hardware simulation
of generation of such blurred image data as might occur in a forward looking
radar (FLR).

KEY WORDS: 1Image Restoration, Distributed Parameter Systems, Recursive
Filtering, Diffusion Equation, Image Simulation

4. FAST INVERTION OF BANDED TOEPLITZ MATRICES BY CIRCULAR DECOMPOSITION

Banded Toeplitz matrices of large size occur in many practical problems
[1-6]. Here the problem of inversion as well as solving simultaneous equa-
tions of the type Hx = y, when H is a large banded Toeplitz matrix, is
considered. It is shown via certain circular decompositions of,H that such
equations may be exactly solved in O(Nlog,N) rather than in O(N") computa-
tions as in Levinson-Trench algorithms. %urther, the algorithms of this
paper are non-recursive (as compared to the Levinson-Trench algorithms) and
afford parallel processor architectures and others such as transversal fil-
ters [17], where the computation time becomes proportional to N rather than
NlogN. Finally, a principle of matrix decomposition for fast inversion of
matrices is introduced as a generalization of the philosophy of this paper.

KEY WORDS: Toeplitz Matrix Inversion, Fast Matrix Inversion, Circulant
Matrices
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